Underrated Gems in R: Must-Know Functions You’re Probably Missing Out On



If you’re a fan of the tidyverse, check out purrr::reduce(). It’s a modern take on base R’s Reduce, offering a consistent syntax with other purrr functions (like .x and .y for arguments) and handy shortcuts like ~ .x + .y for inline functions. It also defaults to left-to-right reduction but can go right-to-left with reduce_right(). Worth a look if you want a more polished, tidyverse-friendly alternative!

Here’s an intermediate-level example of using the reduce() function from the purrr package for joining multiple dataframes:

library(purrr)
library(dplyr)

# Create three sample dataframes representing different aspects of customer data
customers <- data.frame(
  customer_id = 1:5,
  name = c("Alice", "Bob", "Charlie", "Diana", "Edward"),
  age = c(32, 45, 28, 36, 52)
)

orders <- data.frame(
  order_id = 101:108,
  customer_id = c(1, 2, 2, 3, 3, 3, 4, 5),
  order_date = as.Date(c("2023-01-15", "2023-01-20", "2023-02-10", 
                        "2023-01-05", "2023-02-15", "2023-03-20",
                        "2023-02-25", "2023-03-10")),
  amount = c(120.50, 85.75, 200.00, 45.99, 75.25, 150.00, 95.50, 210.25)
)

feedback <- data.frame(
  feedback_id = 201:206,
  customer_id = c(1, 2, 3, 3, 4, 5),
  rating = c(4, 5, 3, 4, 5, 4),
  feedback_date = as.Date(c("2023-01-20", "2023-01-25", "2023-01-10",
                          "2023-02-20", "2023-03-01", "2023-03-15"))
)

# List of dataframes to join with the joining column
dataframes_to_join <- list(
  list(df = customers, by = "customer_id"),
  list(df = orders, by = "customer_id"),
  list(df = feedback, by = "customer_id")
)

# Using reduce to join all dataframes
# Start with customers dataframe and progressively join the others
joined_data <- reduce(
  dataframes_to_join[-1],  # Exclude first dataframe as it's our starting point
  function(acc, x) {
    left_join(acc, x$df, by = x$by)
  },
  .init = dataframes_to_join[[1]]$df  # Start with customers dataframe
)

# View the result
print(joined_data)
   customer_id    name age order_id order_date amount feedback_id rating
1            1   Alice  32      101 2023-01-15 120.50         201      4
2            2     Bob  45      102 2023-01-20  85.75         202      5
3            2     Bob  45      103 2023-02-10 200.00         202      5
4            3 Charlie  28      104 2023-01-05  45.99         203      3
5            3 Charlie  28      104 2023-01-05  45.99         204      4
6            3 Charlie  28      105 2023-02-15  75.25         203      3
7            3 Charlie  28      105 2023-02-15  75.25         204      4
8            3 Charlie  28      106 2023-03-20 150.00         203      3
9            3 Charlie  28      106 2023-03-20 150.00         204      4
10           4   Diana  36      107 2023-02-25  95.50         205      5
11           5  Edward  52      108 2023-03-10 210.25         206      4
   feedback_date
1     2023-01-20
2     2023-01-25
3     2023-01-25
4     2023-01-10
5     2023-02-20
6     2023-01-10
7     2023-02-20
8     2023-01-10
9     2023-02-20
10    2023-03-01
11    2023-03-15

This example demonstrates how to use reduce() to join multiple dataframes in a sequential, elegant way. This pattern is particularly useful when dealing with complex data integration tasks where you need to combine multiple data sources with a common identifier.





Source link

Related Posts

About The Author

Add Comment